By-Connor, Aikin.
Is It Really a Better Technique?
California Univ., Los Angeles. ERIC Clearinghouse fo: Junior Coll. Information.
Report No-Topical Pap-6.
Pub Date Mar 69
Note-21p.
EDRS Price MF - $\$ 0.25 \mathrm{HC}-\$ 1.15$
Descriptors-*Junior Colleges, *Program Evaluation, *Statistics
This report presents a "cookbook" approach to assist any teacher or researcher not familiar with statistics in comparing performance differences between two classes using group medians. Illustrations are provided for comparing group medians in hypothetical situiations in several disciplines (English, math, philosophy, political science). (JC)

IS IT REALLY A BETTER TECHNIQUE?

U.S. DEPARTMENF OE HEALIR, EDUEAIION \& WELFARE Offlce of EDUCAIION

This documelit has beew reproduced exacily as recelved from the PERSON OR ORGAMIRAICY ORIGINTIING II. POLHTS OF YIEW OR OPMHONS Stated do not mecessarliy represent oficlal office of education POSIIION OR POLICY.
is IT REALLY $A \operatorname{better~teghitique?~}$

Aikin Connor Assistant Research Educationist

RRIC Clearinghouse for Junior College Information Graduate Scisool of Education and the University Library University of California

Los Angeles, 90024

Abstract

This Topical Paper was prepared pursuant to a contract with the Office of Education, U.S. Department of Health, Education and Welfare. Contractors undertaking such projects under governnent sponsorship are encouraged to express freely their judgment in professional and technical matters. Points of view or opinions do not, therefore, necessarily represent official Office of Education pesition or policy.

TOPICAL FAPERS

1) A Developmental Research Plan for Junior College Remedial Education, July 1968.
2) A Developmental Research Plan for Junior College Remedial Education Number 2: Attitude Assessment, November 1968.
3) Student Activism and the Junior College Administrator: Judicial Guidelines, December 1968.
4) Students As Teachers, January 1969.
5) Is Anyone Learning to Write?, Pebruary 1969.
6) Is It Really a Better Technique?, March 1969.

This Topical Paper is sixth in a series designed to stimulate rescarch in the junior college. Each presents a model that may be followed by instructors, administrators, or researchers who wish to study effects of their efforts. These Topical Papers are available from the clearinghouse on request.

Each user of one of these designs is invit:ed to send his results to the Clearinghouse, using either the form provided on page 17 or his own mode of reporting. The reports will be collated and the findings disseminated widely.

The author is a member of the Clearinghouse staff. His design was reviewed by Maurice Smith of Golden West College and Ruth Cline of Los Angeles Valley College.

Arthur M. Cohen Principal Investigator and Director ERIC Clearing $n o u s e$ for Junior

Coll.ege Information

A junior college English instructor thinks his more mature evening students are performing better than his day students. A philesophy professor feels that reprimanding students about performance on exams does more harm than good. A political sefince instructor calls on the library staff to help her increase student use of current history materials. A math professor notices that classes seem to be requiring less time to cover the same material. What do all these teachers have in common? All are interested in student learning and all are on the verge of formulating explanations that can be tested for accuracy. Suppose, however, none of them is well-versed in educational experimental design or statistics -- must he rely on subjective evaluations and accept his own hunches? The purpose of this paper is to present an easy-to-use plan that offers the power and objectivity of statistics without the complexities.

The basic plan for all research is to record observations. The biologist records what he sees through his nicroscope; the chemist, what he observes in his test tubes; the educator, what he notes in his classroom. All observe, record, and analyze, but, to have order in their findings, they must first have order in their observations. They carefully design their research so that their observations are focussed, usually on one "variable." By controlling the situation in which this variable operates, the researcher can feel some confidence in interpreting his findings and making generalizations.

The educational researcher may have the most difficult problem of all, since he can rarely control the teaching-learning situation. A simple and, for
the most part, effective plan to achieve the effect of control without actually exerting control is the "control group vs. experimental group" design. In this design, the researcher utilizes two highly similar groups -- one in which the experimental variable is active and one in which it is not. Typical experimentsl variabiles in educationail research are innovative classroom procedures, experimental testbooks, and new groupiage of students. In research parlance, the experimental group is said to have received a "treatment" and the problem of the researcher is to evaluate the effect of che treatment. He records his observations of the groups in terms of, naturally, observable behavior. To impose objectivity on his observations he uswally applies some sort of standard measure to the belavior of the two groups. Frequently, this measure is an examination. If the experimental or created group performs better than the control or untreated group, the experiment or innovation is said to be successful.

The junior college English instructor who hypothesizes that his more mature evening students are better than his day students can observe how the variable of maturity affects atudents' behavior on examinations. The philosophy professor who thinks that scolding students about grades is harmful can test his hypothesis with verbal chastisement as the experimental variable. The political sctence instructor can check the effect of her efforts to get students to use the library by comparing those who had received the "treatment" with those who had not. The math professor may have a hunch that the new math program in the state's public schools actually is "paying off" in terms of student performance in college. He therefore compares this year's students with students from previous years. The instructor can test these hunches by means of group
comparisons if he cares to do so.

Having selected comparable groups and subjected one to the proposed innovation (or, as in some of the cases above, having selected groups comparable except in the variable under study), the researcher must make the comparisons. In educational research the relevant measure to compare is some sort of academic performance, usually on a test. In the previous examples, the English instructor may give the same final exam to each class, the philosophy professor also may use scores from the students' tests, the poifitical science instructor may compare numbers of visits to the library, and the math professor may compare results an a serfes of departmental exams.

If the measured performance of the groups being compared is vastly different, the researcher probably can feel that the variable he is studying is indeed effective. If the performance of the two groups is not realiy very different, however, he may have some doubts. One way to resolve his doubts is to repeat the experimeat or research again and again with different students. If the resuits are nearly always similar, his doubts may be resolved, since such repetition, or replication, is frequently impractical or inpossible, the researcher turns to statistical procecures that offer substantially the same assurance of the reliability of his observations without the need to repeat the research.

The question statistics will answer is "What are the chences of getting similar results if the experiment is repeated?" Usually, educational researchers are content to accept results whose probabilities of being repeated are 95 out of 100. This represents the so-called ". 05 level of significance."

Tecanically, statistical tests are designed to test the hypothesis that two groups actually represent subsets or different parts of some larger group. Reiating this kind of test to the comparison of experimentai and control groups, statistical tests will indicate the probability that the two groups are really only subsets of a larger group -- that, even though one has had a "treatment" or does differ on some variable, the measure on which they are compared does not reflect the difference significantly. If the probability of being from the same larger group is 5 per cent or less, the treatment or variable being researched is assumed to be responsible.

The researcher then gathers his data, that is, his weasured comparisons, and proceeds to amalyze his findinge statistically. The statistical test he shōsses must depend on the specific information he seeks and the specific assumptions regarding his data that underly various statistical testis.

In the simple design of group comparisons, an easy method of determining the reliability of the results is the following adaptation of a general statistical procedure called the Median Test. Since it ignores the size of differences between scores on the comparison measure, the Median Test is not the most powerful of statistical tests. However, in many educational research problems the size of differences on a comparison measure may be slightly inaccurate and a so-called "powerful" test might, in effect, exaggerate this failing. There are two iuportant factors favoring the Median Test for group ccmparisons -- it is easy to compute and req̧uires only two basic assumptions. One assumption is that both groups are compared by the same measure; the second, that the two groups are, in fact, separate groups, not the same group measured before and
after a treatment. In the following presentation, the Median Test has been restructured, so to speak, to facilitate computation and to avoid presenting unfamiliar concepts and procedures.

Step 1. Find the median for both groups combined. (Directions for finding the median are given in Appendix A.)

Step 2. Find the difference between the number of scores in the experimental group above the combined median and the number below. If there are fewer above the median than below, there is no need to continue -- the treatment wes not successful.

Step 3. Repeat Step 2 for the control group.
Step 4. Find the average difference, using both groups. (Number from Step 2 plus number from Step 3, divided by i..)

Step 5. If the number of scores above or below the median in either group is fewer than 10 , subtract 1 from the average difference, as determined in Step 4.

Step 6. Square the difference found in Step 5 (or Ster) 4, if Step 5 is skipped).

Step 7. Divide the number from Step 6 by the number of scores in the experimental group above the median plus the number below.

Step 8. Divide the number in the experimental group (those above the nedian plus those below) by the number in the control group above the median plus the number below.

Step 9. Multiply the number from Step 7 by the number from Step 8 plus 1.
Step 10. If the number from Step 9 is greater than 2.71, the two groups may be presumed to be significantly different -the treatment was a success.*

[^0]A special case where this test may be used without al specific sontrol group is in comparing the experimental group's performance on a standardized test with the published norms for the test. In this special case, Siep is given as the 50th persentile taken from the norms. Follow Steps 2, 5, 6 and 7. If the figure from Step 7 is larger than 2.71_{s} the experimental group may be assumed to be significantly different.

For some real-life examples of this procedure, let us return to those teachers dewcribed earlier. In each case, the necessary date (i.e., tast scores, number in each group, etc.) will be given. So that the reader, if he chooses, may practice using the procedure, answers for each step will be given in the margin, and may be covered.

Case No. 1

A college English instructor had a feeling that his evening English I class "went better" than his daytime class, he felt the students reaponded better and that he taught better. His hunch was that the eveaing students, being more mature in age, were more mature in their gereral understanding. Knowing, however, that appearances can be deceptive and that they might not really be so different from the less mature daytime stuients, he gave each class a test covering the objectives he nad projected at that point. On the basis of this test, he compared the two groups, considering the evening class as the experimental group ii.e., the class which had measurably greater maturity in age), with tine simplified adaptation of the Meilan Test. The class scorea are given on the facing page.

Evening Class (Experimental)
9598
$93 \quad 92$
$90 \quad 88$
87 88
86 85
86 82
86 81
85 80
85 79
84 76
$80 \quad 76$
79 76
78 75
77
76
76

Daytime Class (Control) 80 75

Step 1. Median for two groups combined.
Step 2. Difference in experimental group scores between those above and those below the combined median.

Step 3. Difference in control group scores between those above and those below the combined median.

Step 4. Average difference between the two groups.
Step 5. Since number of scores below the median is less than 10 , subtract 1 from the average difference.

Step 6. Square number from Step 5.
Step 7. Divide number from Step 6 by 15 (total in evening class).

Step 8. Divide number in evening class by number in daytime class.

$$
(15 \div 13=1.15)
$$

Step 9. Multiply 1 plus number from Step 8, by number from Step 7.
$(2.15 \times .27=.57)$
Step 10. As number from Step 9 is leas than 2.71, the difference between the classes is not significant.

Case No. 2 *

A junior college philosophy professor had heard his colleagues talk of the efficacy of tongue-lashing en student's grades, but had not heard of any expirical data -- only opinions. One semester, when he had two sections of an introductory course in philosophy that seemed comparable in ability, he planned to gather the empirical data he thought would refute his colleagues' opinions. Por one class, he followed his usual methods of teaching and gyading. For the other class, he taught the same way but, instead of grading as usual, kept two sets of grades. One set was the "real" grade, which he recorded; the second set of grades appeared on the students' exams and each grade was systematically reduced two letter grades. Besides giving the apparent low grades in this class, he berated the students after each test to "shape up or ship out." His final comparison of the groups was the final exara, which he graded in his customary method for both classes. The scores are given on facing page.

[^1]Control Class

Experimental Class

98	95
95	90
94	87
92	85
90	80
90	78
68	76
88	74
87	74
86	72
84	70
80	68
80	65
78	60
75	58
71	57
68	50

Step 1. Median of combined groups.
Step 2. Difference in experimental class between scores above median and below.

Step 3. Difference in control class between scores above and below the median.

Step 4. Average difference between two classes.
Step 5. Since number of scores above the median was less than 10 , subtract 1 from average difference.

Step 6. Square the difference.
Step 7. Divide by total in the control class.
$(49 \div 17=2.88)$
Step 8. Divide number in experimental class by number in control class.
$(17 \div 17=1)$
Step 9. Mintinly 1 plus number from Step 8, by number from Step 7.

Step 10. As.number from Step 9 is greater thar 2.71, he concludes that his hunck was right -- barating students is hermful to their academic performance.

* Remember -- his hypoithesis was that the experimental group would
perform less well than the control group.

Case No. 3.
A junior college political science instructor had feit for some time that her students didr't take proper advantage of the library facilities. She siscussed the problem with the library staff and together they developed a short instructional program about the library. Since the program utilized class time and involved the library staff, the instructor thought it wise to cvaluate its benefits before she used it full-scale. Because the program nâả informational concent, it would have been possible for her to test the students in terme of their asquisition of such information. However, as a political science instructor, she was really interested only in whether or not the program resulted in more student use of the library. She therefore took as a criterion measure the number of books checked out during a semester. She compared the class that had been given the instructional program with another to whom she taught the same course. The number of books each student checked out during the semester is given on the opposite page.

11	10
6	9
4	8
3	8
3	7
3	6
3	6
3	5
2	3
2	3
1	2

Step 1. Median of two classes combined.
Step 2. Difference in experimental class scores above median and below.

Step 3. Difference in control class above and below median.

Step 4. Average difference between the two classes.
Step 5. Since both above median and below median categories are fewer then 10 , subtrsct 1.

Step 6. Square number from Step 5.
Step 7. Divide by total in experimental class.
Step 8. Divide number in experimental class by number in contirol class.
$(16 \div 11=1.45)$

$$
(11 \div 11=1)
$$

Step 9. Multiply 1 plus number from Step 8, by number from Step 7.
$(2 \times 1.45=2.90)$
Step 10. Since number from Step 9 is more than 2.71, the instructional prograin was considered successful.

Case No. 4
A math professor noticed that this year's class was substantially farther ahead, in terms of concept understanding, than classes in previous years. If this observation were really true, he thought it might be due to the effect of the new math program in the state, since this year's students had all been exposed to it through most of their public school years. Fortunately for him, the math department had given departmental exams each year and had kept a record of the results for the previous ten years. Thus he was able to compare his current students' performance with that of students from the past ten years. Because the departmental exam was, in effect, a standardized test and had norms developed for it, he was able to use the 50th percentile in place of the median. The scores of his current students and the 50ch percentile of the norm group are given opposite.
Current Meth Class Scores 50th Percentile $=76$
9896

$$
96
$$

$$
95
$$

$$
95
$$

$$
95
$$

$$
93
$$

$$
90
$$

$$
87
$$

$$
86
$$

$$
85
$$

$$
85
$$

$$
84
$$

$$
80
$$

$$
78
$$

$$
75
$$

$$
69
$$

$$
65
$$

60

Step 1. 50th percentile given as 76.
Step 2. Difference between scores above and below.
Step 5. Since only 4 students scored below the 50th percentile, subtzact 1 from the difference.

Step 6. Square number from Step 5.
Step 7. Jivide by total in class

$$
(100 \div 19=5.26)
$$

Step 8. Since the number from Step 7 is larger than 2.71 he concluded that this year's class was significantly more proficient in math.

As an additional aid to the would-be researcher, sable I, Appendix A, gives the number of cases in the experimental group above the median necessary to achieve a signifficant difference. Directions for its use are given beneath the table. Note that if the number of scores of the two groups combined above the median is diffirent from the number below the median by more then one, Table I can not be used. In this relatively rare instance, it will be necessary to make the computations as outlined on page 5. Computation will also be neecssary if either group numbers more than 20.

Appendix A

The median is a point (on the same scale used to measure the group) that divides the upper half of the scores from the lower half. Each score is assumed to be the midpoint of a "score interval." For example, a score of 8 is the midpoint of the score interval 7.5-8.5, a score of 123 is the midpoint of the score interval 122.5-123.5, ete.

To find the median if the total number in the group is odd:

1. Arrange scores in order, low to high.
2. Subtract 1 from total number and divide the remainder by 2 .
3. From the lowest score, count until the number from Step 2 is reached.
4. Median is the next score above.

Example: Scoraz 1, 3, 5, 9, $11 \quad \mathrm{~N}=5$
$5-1=4 ; 4 / 2=2$; score of 3 is 2 nà score, score of 5 (the next score above) is the median.

To find the median if the total number in the grosp is even:

1. Arrange scores in order, low to high.
2. From the lowest score, count upward until half the scores are counted.
3. The median will be point halfway into the interval between the highest point of the score interval represented by the top score in the lower half, and the lowest point of the acore interval represented by the lowest score in the upper half.

Example: Scores 1, 2, 3, 5, 8, 8, 10, $11 \quad \mathrm{~N}=8$
Median is located halfway between 5.5 (the upper limit of the highest score interval in the lower half) and 7.5 (the lower limit of the lowest score interval in the upper half). Thus. the median is $(5.5+7.5) / 2$ or 6.5 .

Example: Scores $1,2,5,5,5,8,10,11 \quad N=8$
Since the interval between the highest score in the lower half and the lowest score in the upper half is occupied by the three scores of 5 , the median is located after the 2 nd score of 5 and before the 3rd. Thus, since the lower limit of the score interval represented by 5 is 4.5 , the median is $4.5+.67$ (2/3rds of the way through the score intervel) or 5.17.

TABLE I.

Find the total in the experimental group in the vertical column;
follow across to the number in the control group. Number in the intersection is the number required in the experimental group above the median for significant difference. If the difference between the total number of scores above the median (experimental group plus the control group) and the total number below the median is more than one, this rable is not accurate.

Form For Reporting Research

Researcher's Name

Subject Matter Area of the Research

Name of College

Location of Co1lege

In the space below, describe the research. The description should include: (1) hypothesis (or "hunch"), (2) number of students invoived in each group, (3) statement of procedure, (4) results.

```
Please mail form to:
    ERIC Clearinghouse for Junior College Information
    96 Powell Library, UCLA
    Los Angeles, California }9002
```


[^0]: *The number 2.71 is the size of Chi-squars necessary co reject the null hypothesis in a one-tailed test, with one degree of freedom, at the .05 level of conifidence.

[^1]: * This example was suggested by a study made by Dr. Lawrence A. Werize!, Chico State College, while he was teaching philosophy at Yuba College.

